lambdaway
::
eric_dobbs2
2
|
list
|
login
|
load
|
|
_h2 [[eric_dobbs]] | eric_dobbs2 | [[eric_dobbs3]] _p A variant for the {b fractal} function. _h2 1) defining the function {pre '{def fractal {lambda {:curv :level :length} {if {< :level 1} then M:length else {S.map {{lambda {:curv :lev :len :command} {fractal :curv :lev :len} :command } :curv {- :level 1} {/ :length 3}} {:curv}} }}} -> {def fractal {lambda {:curv :level :length} {if {< :level 1} then M:length else {S.map {{lambda {:curv :lev :len :command} {fractal :curv :lev :len} :command } :curv {- :level 1} {/ :length 3}} {:curv}} }}} } _p Remember that in lambdatalk lambdas are not closures - see [[lambda]] - and so {b :curv, :level & :length} are unknown to the inner lambda. The workaround is to use an {b IIFE}. Note how the IIFE, {b '{{lambda {args} expression} vals}}, gives the inner 4-ary lambda only 3 values {b :curv, '{- :level 1} & '{/ :length 3}}. It's a partial call generating an anonymous function waiting for the missing one, {b :command}. Then the {b S.map} primitive applies this function to the sequence of commands stored in {b :curv}, a function without arguments called to return the sequence of randomized commands, say "{b T'{- :a} T'{+ :a :a} T'{- :a} T0}". _p This is a more lisp-like version using two mutually recursive functions. {pre '{def fractal {def fractal.repeat {lambda {:curv :lev :len :command} {fractal :curv :lev :len} {S.first :command} {if {S.empty? {S.rest :command}} then else {fractal.repeat :curv :lev :len {S.rest :command}} }}} {lambda {:curv :level :length} {if {< :level 1} then M:length else {fractal.repeat :curv {- :level 1} {/ :length 3} {:curv}} }}} } _p Note that {b :curv} is the name of a function and {b '{:curv}} is the sequence of commands, not an array, not a list. Because lambdas are variadic the last argument of the {b fractal.repeat} function accepts a sequence of values. See [[lambda]] for more details on lambdas. _h2 2) defining some fractal curves _p We choose to randomize angles and create a function, {b randangle} returning a random value between two values, {b :a & :b}. {pre '{def randangle {lambda {:a :b} {let { {:a :a} {:b :b} // manual closure (for the poor man) {:t {random}} } {+ {* {- 1 :t} :a} {* :t :b}}}}} -> {def randangle {lambda {:a :b} {let { {:a :a} {:b :b} {:t {random}} } {+ {* {- 1 :t} :a} {* :t :b}}}}} } _p Examples {pre '{def KOCH {lambda {} {let { {:a {randangle -45 45}} } T{- :a} T{+ :a :a} T{- :a} T0}}} -> {def KOCH {lambda {} {let { {:a {randangle -45 45}} } T{- :a} T{+ :a :a} T{- :a} T0}}} '{def PEANO {lambda {} {let { {:a {randangle 85 95}} } T-:a T:a T:a T:a T-:a T-:a T-:a T:a T0}}} -> {def PEANO {lambda {} {let { {:ang {randangle 85 95}} } T-:ang T:ang T:ang T:ang T-:ang T-:ang T-:ang T:ang T0}}} } _p In this version commands are given in sequence, out of any array. _p Writing {b '{fractal KOCH 1 100}} generates the following sequence of commands {prewrap {fractal KOCH 1 100} } _p which will be transformed by the {b turtle} primitive into a sequence of SVG points, {b x0 y0 x1 y1 ...} {prewrap '{turtle 250 // x origine 50 // y origine 0 // initial rotation {fractal KOCH 1 100} // the curve } -> {turtle 250 50 0 {fractal KOCH 1 100}} } _p feeding the {b points} attribute of a SVG polyline to display the curve. _h2 3) drawings {pre '{svg {@ width="580" height="580" style="box-shadow:0 0 8px #000;"} {polyline {@ points="{turtle 280 50 0 {fractal PEANO 1 500}}" stroke="#888" fill="transparent" stroke-width="5"}} {polyline {@ points="{turtle 280 50 0 {fractal PEANO 3 500}}" stroke="#0f0" fill="transparent"}} {S.map {lambda {} {polyline {@ points="{turtle 10 100 90 {fractal KOCH 3 250}}" stroke="#f00" fill="transparent"}} } {S.serie 1 5}} {S.map {lambda {} {polyline {@ points="{turtle 10 290 90 {fractal KOCH 3 250}}" stroke="#00f" fill="transparent"}} } {S.serie 1 10}} {polyline {@ points="{turtle 10 500 90 {fractal KOCH 3 250}}" stroke="#000" fill="transparent"}} } } {svg {@ width="580" height="580" style="box-shadow:0 0 8px #000;"} {polyline {@ points="{turtle 280 30 0 {fractal PEANO 1 500}}" stroke="#888" fill="transparent" stroke-width="5"}} {polyline {@ points="{turtle 280 030 0 {fractal PEANO 3 500}}" stroke="#0f0" fill="transparent"}} {S.map {lambda {} {polyline {@ points="{turtle 10 100 90 {fractal KOCH 3 250}}" stroke="#f00" fill="transparent"}} } {S.serie 1 5}} {S.map {lambda {} {polyline {@ points="{turtle 10 290 90 {fractal KOCH 3 250}}" stroke="#00f" fill="transparent"}} } {S.serie 1 10}} {polyline {@ points="{turtle 10 500 90 {fractal KOCH 3 250}}" stroke="#000" fill="transparent"}} } _p Refresh the page to see variations. _p {i Alain Marty | 2022/01/01} _h2 from Eric | 2022/01/03 0:07 {prewrap Alain, I think this is pretty much what I was trying to find when I was struggling with my own attempt to port the DrawFractalLine function. '{def fractal {lambda {:curv :level :length} {if {< :level 1} then M:length else {S.map {{lambda {:curv :lev :len :command} {fractal :curv :lev :len} :command } :curv {- :level 1} {/ :length 3}} {:curv}} }}} That's really quite beautiful and it seemed like it was just out of reach when I was working on my own. :-) I particularly like your simplification here, combined with including a T0 instruction in the :curv -compared to my use of an empty instruction and extra if-statement: '{fractal :curv :lev :len} :command Thank you for the fun new year's present! :-) -Eric } _h2 from alain 2022/01/0313:07 {prewrap Eric Thanks. And thank you also for having opened to me a field of exploration towards the L(indermeyer)-systems. The problem is to find the most general function allowing to generate all the families of fractals from simple rules. Nice walks in sight Regards Alain } {style pre { box-shadow:0 0 8px #000; padding:10px; } }
lambdaway v.20211111